Calculation Policy

Forest Academy Bury Road, Brandon
Suffolk, IP27 OFP
E mail: forestadmin@forestacademy.co.uk
Headteachers: Mrs A Grimes and Mrs L Rourke

Tel: 01842890258
E mail: office@elvedenacademy.co.uk

Date Completed: May 2018
Completed by: Helen Morley + Lorna Rourke.
Review Date: May 2021

National Curriculum Aims:

The national curriculum for mathematics aims to ensure that all pupils:

* become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
* reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language
* can solve problems by applying their mathematics to a variety of routine and non-routine problems with Increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.

Maths Number

30-50 Months:

*Use some number names and number language spontaneously.
*Recites numbers in order to 10.

* Knows that numbers identify how many objects are in a set.
*Beginning to represent numbers using fingers, marks on paper or pictures.
* Sometimes matches numeral and quantity correctly.
* Shows curiosity about numbers by offering comments or asking questions.
* Compares two groups of objects, saying when they have the same number.
* Shows an interest in number problem.
*Separates a group of three or four objects in different ways, beginning to recognise that the total is still the same.
* Shows an interest in numerals in the environment.
*Shows an interest in representing numbers.
*Realises not only objects, but anything can be counted, including steps, claps, jumps.

40-60 Months:

*Recognise some numerals of personal significance.
*Recognises numerals 1-5.

* Counts up to three or four objects by saying one number name after them.
*Counts actions or objects which cannot be moved.
*Counts objects to 10 and beginning to count beyond 10.
*Counts out up to six objects from a larger group.
*Selects the correct numeral to represent 1 to 5, then 1 to 10 objects.
* Counts an irregular arrangement of up to 10 objects.
*Estimates how many objects they can see and checks by counting them.
* Uses the language of 'more' or 'fewer' to compare two sets of objects.
*Finds the total number of items in two groups by counting all of them.
*Says the number that is one more than a given number.
*Finds one more or one less from a group of up to five objects and then ten objects.
*In practical activities and discussion, begin to use

Counting and Place Value: 1:1 Correspondence

Teens Numbers: 10s and units: $13=10+3$

$$
\begin{aligned}
& 14=10+4 \\
& 15=10+5
\end{aligned}
$$

Ordinal Numbers:

Addition: Addition with physical objects, moving to Numberline - one MORE.

the vocabulary involved in adding and subtracting.
*Records, using marks they can interpret and explain.
*Begins to identify own mathematical problems based on own interests and fascinations.

Early Learning Goals:

Children count reliably with numbers from one to 20 , place them in order and say which number in one more or one less than a given number. Using quantities and objects, they add and subtract two single-digit numbers and count on or back to find the answer. They solve problems, including doubling, halving and sharing.

Numberbonds to 10, including Missing Number calculations.

$$
10=9+? \quad 8+?=10
$$

Subtraction: Take away with physical objects, scoring and counting back.

Using Physical Objects:
3-2 =

Scoring:

Counting Back: Using a structured Numberline - One LESS

Count back to find the difference.

Multiplication: Doubling: Same amount again.

\min

Finding doubles

$+\square=$ 0

$+00=$ 88

Division and Fractions: Halving and sharing. Halving as TWO EQUAL groups.

Halving: Bubble Method:

Sharing physically into groups. $6 \div 3=2$

Problem Solving:

3 bears are going for a picnic. How many plates do they need? How many pieces of cutlery will they need? If they each have 2 sandwiches, how many sandwiches do they need to make? If I buy 9 biscuits and share them equally, how many biscuits do the bears end up with?

Addition	
Pupils should be taught to:	Numberlines: Knowing addition can be done in any order.

* read, write and interpret mathematical statements involving addition (+) and equals (=) signs
* represent and use number bonds within 20 and number bonds to $100,10+90$, 20+80.
* add one-digit and two-digit numbers to 20 , including zero
* solve one-step problems that involve addition using concrete objects and pictorial representations, and missing number problems such as $7=4+$?
* Problems should include the terms: put together, add, altogether, total, more than, so that pupils develop the concept of addition and are enabled to use these operations flexibly.

Numberlines: Knowing addition can be done in any order.

Ten Frames, for crossing 10s boundary.

Missing number calculations:

Number bonds to 20 and 100:
Using knowledge of Number bonds to 10.

Bar Model: Problem Solving:

Use of physical objects + pictures. Problem; I have 5 oranges and 3 apples. (Line them up in a line) How many pieces of fruit have I got altogether?

Subtraction

Pupils should be taught to:

* read, write and interpret mathematical statements involving subtraction (-) and equals (=) signs
* represent and use number bonds and related subtraction facts within 20 and number bonds to 100, 100-90, 100-80.
* subtract one-digit and two-digit numbers to 20, including zero eg: 18-9 * solve one-step problems that involve subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=$? -9 .
* They discuss and solve problems in familiar practical contexts, including using quantities. Problems should include the terms: take away, distance between, and less than, so that pupils develop the concept of subtraction and are enabled to use this operation flexibly.

Subtraction
Numberlines: Concept of subtraction resulting in less. 10-6=4

Subtraction using concrete objects:

Difference + Bar model Problem Solving:

Problem; I have 9 apples I eat and 6 apples. (Line them up in a line) How many pieces of fruit have I got left?

Subtraction using base-ten equipment:
$34-9=$

Multiplication

Pupils should be taught to:

* count in multiples of twos, fives and tens
* double and halve numbers to 20 egg. double 3 is 6 , half of 10 is 5
* They make connections between arrays and number patterns * solve simple one-step problems involving multiplication calculating the answer using concrete objects, pictorial representations and arrays e.g. 8 children have 2 sweets each, how many in total?

Multiplication:
$2 \times 3=2+2+2=6$

Multiplication on Numberlines:

Arrays:
$6 \times 3=18$ (across first)

$3 \times 6=18$ (across first)

Bar Model: Multiplication:
There are 2 baskets of apples. Each basket has G apples. How many apples are there altogether?

Division
Pupils should be taught to:
* solve one-step problems involving
division, by calculating the answer using
concrete objects, pictorial
representations and arrays with the
support of the teacher.
* double and halve numbers to 20
e.g. double 8 is 16, half of 20 is 10
* They make connections between
arrays, number patterns, and counting
backwards in twos, fives and tens.

Division by sharing:

12 is divided into 3 groups $=4$ in each group OR

3 groups with 4 in each $=12$ altogether.

Division using Arrays:

Bar Model: Division:
Courtney baked 24 cookies to share with her friends. If she shares her cookies with 6 friends, how many cookies would each friend get?
$C=$ amount of cookies for each friend

Halving: Bubble Method:

Pupils should be taught to:

* recognise, find and name a half as one of two equal parts of an object, shape or quantity
* recognise, find and name a quarter as one of four equal parts of an object, shape or quantity.

Halving and quartering: Bubble Method:

Halving Mat: For use with concrete objects:

$8 \div 1 / 2=16$

Quartering: Use of circles/squares + quantities:

Number and Place Value: Oral and Mental Starters + Counting sessions.

Pupils should be taught to:
*count to and across 100, forwards and backwards, beginning with 0 or 1, or from any given number

* count, read and write numbers to 100 in numerals; count in multiples of twos, fives and tens
* given a number, identify one more and one less
* identify and represent numbers using objects and pictorial representations including the number line, and use the language of: equal to, more than, less than (fewer), most, least
* read and write numbers from 1 to 20 in numerals and words.
* practise counting (1, 2, 3...), ordering (for example, first, second, third...), and to indicate a quantity (for example, 3 apples, 2 centimetres), including solving simple concrete problems, until they are fluent. *recognise place value in numbers beyond 20 by reading, writing, counting and comparing numbers up to 100 , supported by objects and pictorial representations.
*practise counting in twos, fives and tens from different multiples to develop their recognition of patterns in the number system

Number and Place Value: Oral and Mental Starters + Counting sessions.

Place Value: Representing Numbers pictorially using dienes, place value counters, Numicon.

Partitioning Numbers in different ways:

Counting:

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
PIARI									
MalN									

Ordinal Numbers:

Addition
Pupils should be taught to:
* solve problems with addition using concrete

* apply their increasing knowledge of mental and written methods
* recall and use addition facts to 20 fluently, and derive and use related facts up to 100 * add numbers using concrete objects, pictorial representations, and mentally, including:
a two-digit number and ones
a two-digit number and tens
two two-digit numbers
adding three one-digit numbers e.g. $6+7+4$
* show that addition of two numbers can be done in any order (commutative)
* recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.
* Pupils extend their understanding of the language of addition to include: sum
* Record addition in expanded columns supports place value and prepares for formal written methods with larger numbers

Addition with Base-Ten + Regrouping:

Expanded Columns:

Equals signs and missing numbers :
$14+5=10+$

Adding three numbers :
$32+\square+\square=100$

$$
35=1+\square+5
$$

Numberlines:

Add 9 or 11 by adding 10 and adjusting by I $35+9=44$

Bar Model: Problem Solving: 70 children attend a Dance workshop from Brandon and 30 from Thetford. How many children attend altogether?

Subtraction
Pupils should be taught to:
* solve problems with subtraction: using
concrete objects and pictorial representations,
including those involving
numbers, quantities and measures
* applying their increasing knowledge of
mental and written methods
* recall and use subtraction facts to 20 fluently,

a two-digit number and ones
a two-digit number and tens $87-30=57$
two two-digit numbers
subtracting three one-digit numbers

* Understanding subtraction of one number from another cannot be done in any order. * recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.
* Pupils extend their understanding of the language of subtraction to include sum and difference
* Record subtraction in expanded columns supports place value and prepares for formal written methods with larger numbers

Subtraction with Base-Ten + Regrouping:

2 Tens 4 Ones are left.

Numberlines: Concept of subtraction resulting in less:

```
    47-19 =
```


$47-19=28$

What is $160-16 ?$
number line to carry out the subtraction (count back 10 from 160 to 150 and then 6 to 144).

Subtraction: Expanded column: (Without regrouping)

$$
\begin{gathered}
47-24=23 \\
-40+7 \\
-20+4 \\
20+3 \\
\hline
\end{gathered}
$$

Difference + Bar model Problem Solving:

There are 24 students in the class. 7 students do not bring in their homework! How many students bring it in?

24

Multiplication
Pupils should be taught to:
* count in multiples of twos, threes, fives

* calculate mathematical statements for multiplication within the multiplication tables and write them using the multiplication (\times) and equals (=) signs * show that multiplication of two numbers can be done in any order (commutative) e.g $3 \times 4=4 \times 3$
* solve problems involving multiplication and using materials, arrays, repeated addition, mental methods, and multiplication facts, including problems in contexts. E.g. I have 3 bags of apples. Each bag contains 8 apples, how many apples altogether?

Multiplication:
$3 \times 6=3+3+3+3+3+3=18$
(0)

Multiplication on Numberlines:

Arrays: $12 \times 3=\mathbf{3 6}$

Bar Model: Multiplication:

Doughnuts come in packets of 8. I buy three packets. How many doughnuts do I have?

 another is NOT commutative.

* solve problems involving division, using materials, arrays, repeated subtraction mental methods, and division facts, including problems in contexts
* Pupils work with a range of materials and contexts in which division relates to grouping and sharing discrete and continuous quantities. They begin to relate these to fractions and measures (for example, $40 \div 2=20,20$ is a half of 40).
* They use commutativity and inverse relations to develop multiplicative reasoning (for example, $4 \times 5=20$ and $20 \div$ $5=4$)

Division by sharing:

Division as repeated subtraction:
Repeated Subtraction
$15 \div 3=5$ is the number of times you can subtract 3 from 15 before you get to 0 .

Division by grouping:

Bar Model: Division:

Pupils should be taught to:

- recognise, find, name and wite fractions $\frac{1}{3}, \frac{1}{4} \frac{2}{4}$ and $\frac{3}{4}$ of a length, shape, set of objects or quantity
- wite simple fractions for example, $\frac{1}{2}$ of $6=3$ and recognise the equivalence of $\frac{2}{4}$ and $\frac{1}{2}$.

Halving and quartering: Bubble Method:

Using the above method, which is halving and quartering, the children should then be taught to find $2 / 4$ by looking at $1 / 4$ (in this case 5) and multiplying that by 2 , giving $2 / 4$ which would be 10.

Fractions on Numberlines:

The importance here is recognising that 6/4 is the same as 1 and $1 / 2$.

Thirds:

Important to represent thirds as something being divided into 3 equal pieces but ALSO that it is One OUT OF every three.

Number and Place Value: Oral and Mental Starters + Counting sessions.

Pupils should be taught to:

* count in steps of 2,3 , and 5 from 0 , and in tens from any number, forward and backward
* recognise the place value of each digit in a two-digit number (tens, ones)
* identify, represent and estimate numbers using different representations, including the number line
* compare and order numbers from 0 up to 100; use <, > and = signs
* read and write numbers to at least 100 in numerals and in words
* use place value and number facts to solve problems.
* count in multiples of three to support their later understanding of a third. * partition numbers in different ways (for example, $23=20+3$ and $23=10+13$) to support subtraction.

Number and Place Value: Oral and Mental Starters + Counting sessions.

Place Value: Representing Numbers pictorially using dienes, place value counters, Numicon.

Partitioning of Numbers, different ways for the same number:
$23=20+3$

$$
=10+13
$$

$$
=5+5+13
$$

Solving problems using Number Facts:

Number Bonds
also known as
Fact Families

$\underline{5}+\underline{3}=\underline{8}$ $\underline{3}+\underline{5}=\underline{8}$
$\underline{8}-\underline{5}=\underline{3}$
$\underline{8}-\underline{3}=\underline{5}$

Counting in 3s:

* add numbers with up to three digits, using formal written methods of (expanded) columnar
* estimate the answer to a calculation and use inverse operations to check answers * solve problems, including missing number problems, using number facts, place value, and more complex addition

Expanded Columns:

Equals signs and missing numbers :

Bar Model: Problem Solving:

345 children from Forest School attend a Sports Festival. 125 from schools in Mildenhall attend. How many people attend altogether?
Subtraction

* subtract numbers mentally, including:
a three-digit number and ones
a three-digit number and tens
a three-digit number and hundreds eg. 858 - 300
* subtract numbers with up to three digits, using formal written methods of expanded columnar subtraction
* estimate the answer to a calculation and use inverse operations to check answers e.g. $702-249$ is approximately $700-250=$ 450
* solve problems, including missing number problems, using number facts, place value, and more complex and subtraction.

Subtraction
Subtraction with Base-Ten + Regrouping:

Loads of regrouping practice needed.

Subtraction: Expanded column: (With regrouping)

76-29 = (Have children do this practically with counters and dienes materials) This is how they would record to give an answer of 47.

Difference + Bar model Problem Solving:

An oven cost $£ 860$ pounds. The washing machine was $£ 135$ pounds less. How much was the washing machine?

Missing Number and inversion Problems:
2. A pet store had 75 goldfish in a tank. The store sold some goldfish, leaving 43 goldfish in the tank. How many goldfish did the pet store sell?
$75-?=43$ solved by $75-43=32$

Multiplication
Pupils should be taught to:
* count from 0 in multiples of 4, 8,50 and
100.

* recall and use multiplication facts for the 3,4 and 8 multiplication tables. Through doubling, they connect the 2,4 and 8 multiplication tables.
* write and calculate mathematical statements for multiplication using the multiplication tables that they know, including for two-digit numbers times onedigit numbers, using mental and progressing to formal written methods (grid)
* using commutativity and associativity (for example, $4 \times 12 \times 5=4 \times 5 \times 12=20 \times 12=$ 240)
* solve problems, including missing number problems, involving multiplication and including positive integer scaling problems and correspondence problems in which n objects are connected to mobjects.

Multiplication arrays - towards grid method.

$14 \times 6=(10 \times 6)+(4 \times 6)$

$$
=60+24
$$

$$
=84
$$

Lots of work here on place value. If we know $3 \times 7=21$, we know $\mathbf{3 x 7 0}=\mathbf{2 1 0}$ and $\mathbf{3 0 x 7}=210$.

x	30	5
7	210	35

$210+35=245$

Commutativity:

Bar Model: Multiplication:

At the shop I buy 6 packets of doughnuts. Inside each packet is 12 doughnuts. How many do I have altogether? Draw a Bar Model to represent this.

Division	Division
Pupils should be taught to: * recall and use division facts for the 3, 4 and 8 multiplication tables * write and calculate mathematical statements for division using the multiplication tables that they know, using efficient mental methods eg using 12 $x 4=4 \times 124 \times 12 \times 5=4 \times 5 \times 12=20 \times 12=$ 240 and multiplication and division facts	Division grouping - understanding of written method:

* solve problems, including missing number problems, involving division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects.

First: Have children make 80 with dienes - and divide them into 2 (making 4 lots of $10 \mathrm{~s} .4 \times 10=40$) now collect 4 ones/units and divide them into 2 . (2 lots of $1 \mathrm{~s}=2$) answering 42.

Division Facts:

Bar Model: Division:

I have saved $£ 69.00$ for 3 games. The games are the same price. How much did each game cost?

Tenths: Bubble Method \& Visual Representation:

Pupils should be taught to:

* count up and down in tenths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-digit numbers or quantities by 10
* recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators * recognise and use fractions as numbers: unit fractions and non-unit fractions with small denominators
* recognise and show, using diagrams, equivalent fractions with small denominators
* add and subtract fractions with the same denominator within one whole (for example, $5 / 7+1 / 7=6 / 7$)
* compare and order unit fractions, and fractions with the same denominators. * solve problems that involve all of the above.

Division of the whole number 20 by 10 makes 10 EQUAL parts, giving $2.1 / 10^{\text {th }}$ of 20 is 2 .

Fractions on Numberlines:

Bar Model Fractions Problems:

$2 / 5$ of the 30 singers in the choir are boys How many boys are in the choir? How many girls are in the choir?

30

Number and Place Value：Oral and Mental Starters＋ Counting sessions．

Pupils should be taught to：
＊count from 0 in multiples of $4,8,50$ and 100 ；find 10 or 100 more or less than a given number
＊recognise the place value of each digit in a three－digit number（hundreds，tens，ones） ＊compare and order numbers up to 1000 ＊identify，represent and estimate numbers using different representations ＊read and write numbers up to 1000 in numerals and in words
＊solve number problems and practical problems involving these ideas． ＊use multiples of $2,3,4,5,8,10,50$ and 100.
＊use larger numbers to at least 1000， applying partitioning related to place value using varied and increasingly complex problems，building on work in year 2 （for example， $146=100+40$ and $6,146=130+$ 16）．

Number and Place Value：Oral and Mental Starters＋Counting sessions．

Place Value：Representing Numbers pictorially using dienes，place value counters，Numicon．

bundreds	tens	cres
腃弗聿	amumum	0000
䎴	cmex	
唓	－100w	
\＃\＃\＃\＃	¢пшш安	
2	4	7
200	40	7

Partitioning of Numbers，different ways for the same number：

47	Є๑)	G：1
$40+7=47$	$80+3=83$	$60+1=61$
$30+17=47$	$70+13=83$	$50+11=61$
$20+27=47$	$60+23=83$	$40+21=61$
$10+37=47$	$50+33=83$	$30+31=61$
$0+47=47$	$40+43=83$	$20+41=61$
	$30+53=83$	$10+51=61$
	$20+63=83$	$0+61=61$
	$10+73=83$	
	$0+83=83$	

I know how to partition numbers．Look！

But also： $500+50+12=562$

$$
500+40+22=562
$$

$$
500+30+32=562
$$

Counting：

Addition	Addition
Pupils should be taught to:	Addition with Base-Ten + Regrouping:
* add numbers with up to 4 digits using the formal written methods of columnar addition (expanded) * estimate and use inverse operations to check answers to a calculation eg: estimate $8203+499=8200+500=$ 8700. Check: 8702 * solve addition two-step problems in	

Expanded Columns:

Column addition: With correct placement of digits:

Equals signs and missing numbers :

Bar Model: Problem Solving:

On a shopping trip I spent $£ 398.98$ on some clothes and $£ 234.45$ on some shoes. How much did I spend overall.

Subtraction
Pupils should be taught to:
* subtract numbers with up to 4 digits

* solve subtraction two-step problems in contexts, deciding which operations and methods to use and why.

Subtraction with Base-Ten + Regrouping:

Loads of regrouping practice needed - with apparatus counters/dienes.

Subtraction: Expanded column: (With regrouping)

$$
\begin{array}{r}
\frac{615}{753} \\
-491 \\
\hline 262
\end{array}
$$

Difference + Bar model Problem Solving:

Multiplication
Pupils should be taught to:
*count in multiples of 6, 7, 9, 25 and 1000
*recall multiplication and division facts for
multiplication tables up to 12×12

*use place value, known and derived facts to multiply mentally, including: multiplying by 0 and 1 ; multiplying together three numbers
*recognise and use factor pairs and commutativity in mental calculations e.g. factor pairs of 20 are 1 and 20, 2 and 10, 4 and 5 , multiplication are commutative e.g. $4 \times 6=6 \times 4$
*multiply two-digit and three-digit numbers by a one-digit number using formal written layout (grid method)
*solve problems involving multiplying using the distributive law
including using the distributive law
e.g. $34 \times 6=(30 \times 6)+(4 \times 6)$
to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects.

Multiplication arrays - towards grid method
Lots of work here on place value. If we know $3 \times 7=21$, we know $3 \times 70=210$ and $30 \times 7=210$.

\times	30	5
7	210	35

$$
210+35=245
$$

$25 \times 8=80+80+40=200$

$$
8 \times 549=
$$

8

$$
\begin{aligned}
8 \times 549 & =8 \times(500+40+9) \\
& =4000+320+72=4392
\end{aligned}
$$

Factor Pairs:

\section*{| $\begin{array}{c}\text { Factor Pairs } \\ \text { What are all then numbers io ouan multipy } \\ \text { together to get your targes number? } \\ \text { Target Number }=36\end{array}$ |
| :---: |
| $1,2,3,4,6,0,12,18,36$ |}

Bar Model: Multiplication:

Pupils should be taught to:

* recall division facts for multiplication tables up to 12×12 * use place value, known and derived facts to divide mentally, including: dividing by 1 ;
* recognise and use factor pairs and commutativity in mental calculations *Pupils practise mental methods and extend this to three-digit numbers to derive facts,
(for example $600 \div 3=200$ can be derived from $2 \times 3=6$).
* Use efficient written method for division with exact answers when dividing by a one-digit number

Division grouping - understanding of written method:

Division Facts: Learn the patterns.

$$
\begin{array}{ll}
600 \div 3=200 & 800 \div 2=400 \\
600 \div 30=20 & 800 \div 20=40 \\
600 \div 300=2 & 800 \div 200=4
\end{array}
$$

Bar Model: Division:

Pupils should be taught to:

* recognise and show, using diagrams, families of common equivalent fractions * solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number
* add and subtract fractions with the same denominator
* recognise and write decimal equivalents to $1 / 4,1 / 2,3 / 4$
* solve simple measure and money problems involving fractions.
* extend the use of the number line to connect fractions, numbers and measures * practise adding and subtracting fractions with the same denominator, to become fluent through a variety of increasingly complex problems beyond one whole. * practise counting using simple fractions both forwards and backwards.

Tenths: Bubble Method \& Visual Representation:

Equivalent Fractions:

Fractions on Numberlines:

Fractions to decimals:

Number and Place Value: Oral and Mental Starters + Counting sessions.

Pupils should be taught to:

* count in multiples of 6, 7, 9, 25 and 1000
* find 1000 more or less than a given number
* count backwards through zero to include negative numbers
* recognise the place value of each digit in a four-digit number (thousands, hundreds, tens, and ones)
* order and compare numbers beyond 1000
* identify, represent and estimate numbers using different representations * round any number to the nearest 10, 100 or 1000
* solve number and practical problems that involve all of the above and with increasingly large positive numbers * read Roman numerals to 100 (I to C) and know that over time, the numeral system changed to include the concept of zero and place value. sessions.

Place Value: Representing Numbers pictorially using dienes and place value counters.

Counting:

Negative Numbers:

Roman Numerals:

$\mathrm{I}=1$		$\mathrm{V}=5$	$X=10$		L = 50	$\mathrm{C}=100$	$\mathrm{M}=1000$		
1	2	3	4	5	6	7	${ }^{8}$	9	${ }^{10}$
I	II	III	IV	V	VI	VII	VIII	IX	X
${ }^{11} \mathrm{XI}$	${ }^{12} \text { XII }$	${ }^{13} \mathrm{XIII}$	${ }^{14} \text { XIV }$	${ }^{15} \mathrm{XV}$	${ }^{16} \mathrm{XVI}$	${ }^{17} \mathrm{XVII}$	${ }^{18} \mathrm{XVIII}$	${ }^{19} \mathrm{XIX}$	
${ }^{21} \mathrm{XXI}$	${ }^{22} \quad \mathrm{XXII}$	${ }^{23} \text { XXIII }$	$\stackrel{24}{24} \mathrm{XXIV}$	${ }^{25} \mathrm{XXV}$	${ }^{26} \mathrm{XXVI}$	${ }^{27} \mathrm{XXVII}$	${ }^{28} \mathrm{XXVIII}$	$\stackrel{29}{29} \text { XXIX }$	${ }^{30} \mathrm{XXX}$
$\begin{array}{\|c\|} 31 \\ X X X I \end{array}$	${ }^{32} \mathrm{XXXII}$	${ }^{33} \text { XXXIII }$	$\begin{aligned} & 34 \\ & \text { XXXIV } \end{aligned}$	${ }^{35} \mathrm{XXXV}$	$\stackrel{36}{\mathrm{XXXVI}^{2}}$	$\begin{array}{\|l\|l\|} \hline 37 \\ \text { XXXVII } \end{array}$	$\begin{aligned} & 38 \\ & \text { XXXVIII } \end{aligned}$	$\stackrel{39}{\mathrm{XXXIX}^{2}}$	${ }^{40} \mathrm{XL}$
${ }^{41} \text { XLI }$	${ }^{42} \quad \text { XLII }$	${ }^{43} \text { XLIII }$	${ }^{44} \text { XLIV }$	${ }^{45} \text { XLIV }$	${ }^{46} \text { XLVI }$	${ }^{47} \text { XLVII }$	${ }^{48} \text { XLVIII }$	${ }^{49} \text { XLIX }$	${ }^{50} \mathrm{~L}$
${ }^{51} \mathrm{LI}$	${ }^{52} \text { LII }$	${ }^{53}$ LIII	${ }^{54} \text { LIV }$	${ }^{55} \mathrm{LV}$	${ }^{56} \text { LVI }$	${ }^{57} \text { LVII }$	${ }^{58} \text { LVIII }$	${ }^{58} \text { LIX }$	${ }^{60} \mathrm{LX}$
${ }^{61} \text { LXI }$	${ }^{62} \text { LXII }$	${ }^{63} \text { LXIII }$	${ }^{64} \text { LXIV }$	${ }^{65} \text { LXV }$	${ }^{66} \text { LXVI }$	$\begin{array}{\|c\|} \hline 67 \\ \hline \end{array}$	${ }^{68} \text { LXVIII }$	${ }^{69} \text { LXIX }$	${ }^{70} \mathrm{LXX}$
$\begin{array}{\|c\|} \hline 71 \\ \text { LXXI } \\ \hline \end{array}$	${ }^{72} \text { LXXII }$	${ }^{73} \text { LXXIII }$	$\begin{array}{\|l\|l\|} \hline 74 \\ \hline \end{array}$	${ }^{75} \mathrm{LXXV}$		$\begin{array}{\|l\|l\|} \hline 77 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 78 \\ \text { LXXVIII } \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline 79 \\ \text { LXXIX } \\ \hline \end{array}$	${ }^{80} \text { LXXX }$
${ }^{81} \text { LXXXI }$	${ }^{82} \text { LXXXII }$	${ }^{83} \text { LXXXIII }$	$\begin{array}{\|l\|} \hline 84 \\ \text { LXXXIV } \end{array}$	$\begin{aligned} & 85 \\ & \text { LXXXV } \end{aligned}$	$\begin{aligned} & 86 \\ & 1 X X X V I \end{aligned}$	$\begin{array}{\|l\|} \hline 87 \\ \text { LXXXVII } \end{array}$	$\begin{aligned} & 88 \\ & \text { LXXXVIII } \end{aligned}$	$\stackrel{89}{89} \mathrm{XXXIX}$	${ }^{90} \mathrm{XC}$
${ }^{91} \mathrm{XCl}$	${ }^{92} \mathrm{XClI}$	${ }^{93} \mathrm{XCIII}$	${ }^{94} \mathrm{XCIV}$	${ }^{95} \mathrm{XCV}$	${ }^{96} \mathrm{XCVI}$	${ }^{97} \text { XCVII }$	${ }^{98} \text { XCVIII }$	${ }^{99} \mathrm{XCIX}$	${ }^{100} \mathrm{C}$

Addition
Pupils should be taught to:
* add whole numbers with more than 4
digits, including using formal written
methods (columnar addition)
* add numbers mentally with increasingly
large numbers
* use rounding to check answers to
calculations and determine, in the context
of a problem, levels of accuracy
* solve addition multi-step problems in
contexts, deciding which operations and
methods to use and why.

Subtraction

Pupils should be taught to:

* subtract whole numbers with more than 4 digits, including using formal written methods (columnar subtraction) * subtract numbers mentally with increasingly large numbers e.g. 12462 - 2 $300=10162$
* use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy * solve subtraction multi-step problems in contexts, deciding which operations and methods to use and why.

Subtraction
Subtraction with Place Value Counters + Regrouping:

Loads of regrouping practice needed - with apparatus counters/dienes.

Subtraction: Compact Column: (With regrouping)

Difference + Bar model Problem Solving:

Comparsion Model

- Show the relationship between 2 quantities when they are compared
- E.g. compared by showing the difference

The total amount I had in the Bank was $£ 34,567$. I spent $£ 7,992$ on a new car. How much did I have left?

Multiplication
Pupils should be taught to:
*continue to use all the multiplication
tables to 12×12 in order to maintain their

* identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers
* know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers e.g. prime factors of $60=5 \times 3 \times 2 \times 2$
* establish whether a number up to 100 is prime and recall prime numbers up to 19 * multiply numbers up to 4 digits by a oneor two-digit number using a formal written method, including long multiplication for two-digit numbers.
* multiply numbers mentally drawing upon known facts of all tables.
* multiply whole numbers and those involving decimals by 10, 100 and 1000 * recognise and use square numbers and cube numbers, and the notation for squared (2) and cubed (3)
* solve problems involving multiplication using their knowledge of factors and multiples, squares and cubes (for example, $4 \times 35=2 \times 2 \times 35$;).
* solve problems involving multiplication including scaling by simple fractions and problems involving simple rates.

Multiplication Arrays to Grid Method to Long multiplication.

2 digit multiplied by 2 digit number.

$75 \times 429=28,000+1400+630$

$$
75 \times 429=32,175
$$

Long Multiplication: Formal Written Method.

Multiply the ones first.	Then multiply the tens and place the result underneath. Remember, the 3 in 34 is signifying 30 .	Then add.
34	34	34
$\times 5$	5	$\times 5$
20	20	20
	150	+ 150
$5 \times 4=20$	$5 \times 30=150$	170

Stack the numbers on top of each other	Multiply the top number by the ones place in the bottom number ($7 \times 6=42$, carry the 4. $6 \times 2+4=16$)	Put a 0 in the ones place on the next line. Multiply the top number by the tens place in the bottom number. $27 \times 1=27$	To get your answer, add the two lines of multiplication together. $162+270=432$
	4	27	27
27	27	$\begin{array}{r} \\ \times 16 \\ \hline\end{array}$	+16
$\begin{array}{r}\text { ¢ } 16 \\ \hline 2 ?\end{array}$	+16	-162	162
????	162	270	$+270$
			432

Multiplying by $\mathbf{1 0 , 1 0 0 , 1 0 0 0 :}$
Multiplying and Dividing by 10, 100 and 1000

10000	1000	100	10	1	$\frac{1}{10}$	$\frac{1}{100}$	$\frac{1}{1000}$

Multiplying

X 10
digits move LEFT 1 space X 100 digits move LEFT 2 spaces $\begin{array}{ll}\text { X } 100 & \text { digits move LEFT } 2 \text { spaces } \\ \text { X } 1000 & \text { digits move LEFT } 3 \text { spaces }\end{array}$

Dividing

$$
\begin{aligned}
& \div 10 \\
& \div 100 \\
& \div 1000
\end{aligned}
$$

digits move RIGHT 1 space digits move RIGHT 2 spaces digits move RIGHT 3 spaces

| 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 |
| 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 |
| 1000 | 2000 | 3000 | 4000 | 5000 | 6000 | 7000 | 8000 | 9000 |
| 10000 | 20000 | 30000 | 40000 | 50000 | 60000 | 70000 | 80000 | 90000 |

Factor Pairs and Multiples, Prime Numbers:

Bar Model: Multiplication:

For 6 weeks, I saved $£!56.00$. How much did I save in total?

$$
6 \times 156=936^{\prime}
$$

Fraly
 936

* solve problems involving division including using their knowledge of factors and multiples, squares and cubes * solve problems involving division, including scaling by simple fractions and problems involving simple rates.
* Pupils interpret non-integer answers to division by expressing results in different ways according to the context, including with remainders, as fractions, as decimals or by rounding (for example, $98 \div 4=4 / 98=$ 24 r2)

Division Facts: Learn the patterns.
$630 \div 9=70$
$630 \div 90=7$
$630 \div 900=0.7$
Dividing by $\mathbf{1 0 , 1 0 0 , 1 0 0 0 :}$
Multiplying and Dividing by 10,100 and 1000

Bar Model Division Problems:

Fractions
Pupils should be taught to:
* compare and order fractions whose
denominators are all multiples of the same

* identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths * recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements > 1 as a mixed number [for example, $2 / 5+$ $4 / 5=6 / 5=1+1 / 5$)
* add and subtract fractions with the same denominator and denominators that are multiples of the same number * multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams * read and write decimal numbers as fractions [for example, $0.71=71 / 100$) * solve problems which require knowing percentage and decimal equivalents of $1 / 2$, $1 / 4,1 / 5,2 / 5,4 / 5$ and those fractions with a denominator of a multiple of 10 or 25. * practise adding and subtracting fractions to become fluent through a variety of increasingly complex problems. They extend their understanding of adding and subtracting fractions to calculations that exceed 1 as a mixed number.
* practise counting forwards and backwards in simple fractions.

Comparing Fractions:

Compare Fractions

In this math program, you will practice comparing fractions.

$$
\begin{aligned}
& \text { Examples: } \frac{3}{4}>\frac{5}{9} \quad \frac{3}{8}<\frac{1}{2} \quad \frac{3}{12}=\frac{1}{4} \\
& \text { How To: } \quad \frac{3}{5} ? \frac{7}{9} \\
& \text { Step 1: Find a common denominator } \quad 5 \times 9=45 \\
& \text { Step 2: Make equivalent fractions with } \quad \frac{3}{5}=\frac{27}{45} \quad \frac{7}{9}=\frac{3}{4} \\
& \text { the new denominator } \\
& \text { Step 3: Compare the numerators } \quad 27<3550 \\
& \frac{3}{5}<\frac{7}{9}
\end{aligned}
$$

Short Cut Cross Multiply
$\frac{31}{5}->\frac{7^{35}}{9}$

Start

Tenths and Hundredths decimals/fractions/percentages

Full Bubble Method:

The Bubble Method - for finding percentages of any number.

Adding and Subtracting Fractions:

Multiplying Proper Fractions:

Fractions: Bar Model:

Examples af Singapare's Bar Madel Technique

1. Marisol made 300 tarts. She sold $\frac{3}{4}$ of them and gave $\frac{1}{3}$ of the remainder to her neighbor. How many tarts did she have left?

This brilliant strategy

visually
2. Mr. Anderson gave $\frac{2}{5}$ of his money to his wife and spent $\frac{1}{2}$ of the remainder. If he had $\$ 300$ left, how much money did he have at first?

Number and Place Value: Oral and Mental Starters + Counting sessions.

Pupils should be taught to:

* read, write, order and compare numbers to at least 1000000 and determine the value of each digit * count forwards or backwards in steps of powers of 10 for any given number up to 1000000
* interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero * round any number up to 1000000 to the nearest 10, 100, 1000, 10000 and 100000
* solve number problems and practical problems that involve all of the above * read Roman numerals to 1000 (M) and recognise years written in Roman numerals.

Number and Place Value: Oral and Mental Starters + Counting sessions.

Place Value: Representing Numbers pictorially using dienes and place value counters.

Negative Numbers:

Roman Numerals to 1000:

1	I	14	XIV	90	XC
2	II	15	XV	100	C
3	III	16	XVI	200	CC
4	IV	17	XVII	300	CCC
5	V	18	XVIII	400	CD
6	VI	19	XIX	500	D
7	VII	20	XX	600	DC
8	VIII	30	xxx	700	DCC
9	IX	40	XL	800	DCCCC
10	X	50	L	900	CM
11	XI	60	LX	1,000	M
12	XII	70	$L X X$	2,000	MM
13	XIII	80	LXXX	3,000	MMM

Addition
Pupils should be taught to:

* add whole numbers with more than 4 digits, including using formal written methods (columnar addition)
* solve addition multi-step problems in contexts, deciding which operations and methods to use and why.

Addition
Addition with place value Counters: using a counter which represents 100,000 + practically with multilink cubes for addition of decimal numbers.
$3,671,450$

Column addition:

Equals signs and missing numbers : Algebra, Addition Trees and

Bar Model: Problem Solving:

Last year I bought a house. It cost $£ 927,456$ and then my roof leaked broke, so I bought a new roof, that cost $£ 102,569$ - how much did I spend altogether?

Subtraction
Pupils should be taught to:
* subtract whole numbers with more than
4 digits, including using formal written
methods (columnar subtraction)
* solve subtraction multi-step problems in
contexts, deciding which operations and
methods to use and why.

Subtraction with Place Value Counters + Regrouping:

Loads of regrouping practice needed - with apparatus counters/dienes. Inclusive of decimal subtraction too!

Subtraction: Compact Column: (With multiple regrouping)

Difference + Bar model Problem Solving:

Comparsion Model

- Show the relationship between 2 quantities when they are compared
- E.g. compared by showing the difference

The total amount I had in the Bank was $£ 134,567$. I spent $£ 17,998$ on a new car. How much did I have left?

Multiplication	Multiplication		
Pupils should be taught to:	Short multiplication		
	24×6 becomes	342×7 becomes	2741×6 becomes
	24	342	274
*continue to use all the multiplication		$\times 7$	$\times \quad 6$
tables to 12×12 in order to maintain their	144 1	2394 24	166446
fluency	swer: 1	Answer: 2394	Answer: 16446
*multiply multi-digit numbers up to 4 digits			
by a two-digit whole number using the	Long multiplication		
formal written method of long	24×16 becomes	124×26 becomes	124×26 becomes 1
multiplication	24	124 	124
* identify common factors, common	106 $\times 140$	$\times 26$ $\times 280$	26 $\times 44$
multiples and prime numbers	144	744	2480
* solve problems involving, multiplication	384	3 2	3 1
* use estimation to check answers to	Answer: 384	Answer: 3224	Answer: 3224

Multiplication:

Times Table - 12×12												
	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2	3	4	5	6	7	8	9	10	11	12
2	2	4	6	8	10	12	14	16	18	20	22	24
3	3	6	9	12	15	18	21	24	27	30	33	36
4	4	8	12	16	20	24	28	32	36	40	44	48
5	5	10	15	20	25	30	35	40	45	50	55	60
6	6	12	18	24	30	36	42	48	54	60	66	72
7	7	14	21	28	35	42	49	56	63	70	77	84
8	8	16	24	32	40	48	56	64	72	80	88	96
9	9	18	27	36	45	54	63	72	81	90	99	108
10	10	20	30	40	50	60	70	80	90	100	110	120
11	11	22	33	44	55	66	77	88	99	110	121	132
12	12	24	36	48	60	72	84	96	108	120	132	144

Factor Pairs and Multiples, Prime Numbers:

Bar Model Multiplication:

At a dance school there are 4 girls to every 3 boys. There are 63 children altogether. How many girls are there?

7	7	7	7	7	7	7	7	7
$(4+3)$	$(4+3)$	$(4+3)$	$(4+3)$	$(4+3)$	$(4+3)$	$(4+3)$	$(4+3)$	$(4+3)$

So 9 groups: $3 \times 9=27$ Boys. $4 \times 9=36$ girls. $27+36=63$

Division	Division
Pupils should be taught to:	Division grouping - understanding of written method: Short Davison:

* divide numbers up to 4 digits by a twodigit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
* divide numbers up to 4 digits by a twodigit number using the formal written method of short division where appropriate, interpreting remainders according to the context * solve problems involving division and use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy.

Division grouping - understanding of written method: Short Davison:

$496 \div 11$ becomes

Answer: $45 \frac{1}{11}$

Long division:

$432 \div 15$ becomes

Answer: $28 \frac{4}{5}$ $432 \div 15$ becomes

Answer: 28.8

Division Facts: Learn the patterns.
$630 \div 9=70$
$630 \div 90=7$
$630 \div 900=0.7$

Dividing by 10,100,1000:

Multiplying and Dividing by 10, 100 and 1000

10000	1000	100	10	1	$\frac{1}{10}$	$\frac{1}{100}$	$\frac{1}{1000}$

Multiplying
$\times 10$
$\times 100$
$\times 100$
$\times 1000$
digits move LEFT 1 space digits move LEFT 2 spaces digits move LEFT 3 spaces \longrightarrow $\div 1000$

Bar Model Division Problems:

Frank has 4920 apples. He needs to put them into baskets of 40 . How many baskets does he need?

Fractions
Pupils should be taught to:
*use common factors to simplify fractions; use
common multiples to express fractions in the same
denomination
$*$ compare and order fractions, including fractions > 1
$*$ add and subtract fractions with different
denominators and mixed numbers, using the
concept of equivalent fractions
$*$ multiply simple pairs of proper fractions, writing the
answer in its simplest form [for example, $1 / 4 \times 1 / 2=1 / 8$)

* divide proper fractions by whole numbers [for example, $1 / 3$ divided by $2=1 / 6$)
* associate a fraction with division and calculate decimal fraction equivalents [for example, 0.375] for a simple fraction [for example, 3/8)
* recall and use equivalences between simple fractions, decimals and percentages, including in different contexts.
* practise, use and understand the addition and subtraction of fractions with different denominators by identifying equivalent fractions with the same denominator. They should start with fractions where the denominator of one fraction is a multiple of the other (for example, $1 / 2+1 / 8=5 / 8$) and progress to varied and increasingly complex problems.
*use a variety of images to support their understanding of multiplication with fractions. This follows earlier work about fractions as operators (fractions of), as numbers, and as equal parts of objects, for example as parts of a rectangle.
*Pupils use their understanding of the relationship between unit fractions and division to work backwards by multiplying a quantity that represents a unit fraction to find the whole quantity (for example, if $1 / 4$
of a length is 36 cm , then the whole length is $36 \times 4=$ 144 cm).
*They practise calculations with simple fractions and decimal fraction equivalents to aid fluency, including listing equivalent fractions to identify fractions with common denominators.

Simplifying Fractions:

Adding and Subtracting Fractions:

Adding Fractions

In this math program, you will practice adding fractions with different denominators. There are 10 problems in each set.
Example:

$$
\frac{1}{8}+\frac{2}{3}=\frac{19}{24}
$$

How To:
Step 1: Find a common denominator $\quad 8 \times 3=24$
Step 2: Make equivalent fractions with $\frac{1}{8}=\frac{3}{24} \quad \frac{2}{3}=\frac{16}{24}$
the new denominator
Step 3: Add the numerators $\quad \frac{3}{24}+\frac{16}{24}=\frac{19}{24}$
Step 4: Reduce the fraction if needed

Start

$$
\begin{aligned}
\frac{3}{4}-\frac{1}{3} & =\frac{3 \times 3}{4 \times 3}-\frac{1 \times 4}{3 \times 4} \\
& =\frac{9}{12}-\frac{4}{12} \\
& =\frac{5}{12}
\end{aligned}
$$

Multiplying and dividing Fractions:

How many $\frac{3}{8}$ parts can be partitioned from $\frac{3}{4}$?

Invert the fraction
that you are dividing
by

Multiply the
numerators and
denominators

Simplify the fraction
if necessary
$\frac{12}{10}=1 \frac{1}{5}$

Number and Place Value: Oral and Mental Starters + Counting sessions.

Pupils should be taught to:

* read, write, order and compare numbers up to 10000000 and determine the value of each digit
* round any whole number to a required degree of accuracy
* use negative numbers in context, and calculate intervals across zero
* solve number and practical problems that involve all of the above.
* use the whole number system, including saying, reading and writing numbers accurately.

Number and Place Value: Oral and Mental Starters + Counting sessions.

Place Value: Representing Numbers pictorially using dienes and place value counters.

Place Value Chart								
Millons			Thousands			Ones		
Hundred Million	Ten Million	Million	Hundred Thousands	Ten Thousands	Thousands	Hundred	Tens	Ones
100,000,000	10,000,000	1,000,000	100,000	10,000	1,000	100	10	1

Negative Numbers:

Number System:

